Building Envelope Educational Courses, Tools, and Materials
May 29, 2019
The demand for high-performance building envelope systems is on the rise. Energy codes such as ASHRAE 90.1 and the IECC continue to increase requirements aimed at creating more energy efficient and environmentally friendly designs. Some of these increasing code requirements involve the addition of continuous air barriers, as well as continuous insulation to wrap the entire building. Architects, specification writers, and designers have the almost impossible task of staying up-to-date on new code requirements, understanding how and why changes were made, and accurately and appropriately incorporating these changes into their designs.

Over the last several decades, Carlisle Construction Materials (CCM) has become the premier single-source supplier of building envelope materials, including single-ply roofing, air and vapor barriers, waterproofing membranes, insulation, metal products, and more. Therefore, CCM is focused on educating and assisting design professionals through training courses, as well as helpful tools and materials, to minimize the learning curve experienced by architects when code changes occur. Here’s some information on CCM’s newest educational courses, tools, and materials to help you stay at the forefront of building envelope designs.

Education is paramount to the success of building envelope projects, which is why CCM offers free courses to design professionals on various building envelope design considerations. CCM’s “Pushing the Envelope: Going Beyond Conceptual Design” is a 300-level, AIA-accredited course that explores proper product selection, material performance characteristics, test procedures, and best practices as they relate to building envelope systems. It is available online as a self-guided course here or you can request a face-to-face presentation here.

CCM’s newest course, “Building Envelope Design – Understanding Codes, Best Practices, and Tie-in Detailing”, is a 400-level, AIA-accredited course available exclusively as a face-to-face presentation. This course helps raise awareness of code requirements as they relate to building envelope components and systems, with a focus on the all-important tie-in detailing needed to provide an air tight building. Common material misconceptions are also discussed. For more information on CCM’s Building Envelope Design course, or to request an face-to-face presentation, click here

As energy code requirements increase the need for air barriers and continuous insulation, questions about fire safety may arise. In most cases, the International Building Code (IBC) requires compliance with NFPA 285, which is the Standard Test Method for Evaluation of Fire Propagation Characteristics of Exterior Wall Assemblies Containing Combustible Components. Carlisle Coatings and Waterproofing (CCW) offers both an online tool and mobile app that allow you to build an NFPA 285-approved assembly. When finished, a submittal document is created for the wall you designed, and this document can be provided to your building code official if your design is ever called into question. To build your NFPA 285 wall assembly, click here or download the app by searching “NFPA Guide” on the AppStore, GooglePlay, and Amazon.

Since continuous air barriers became a requirement of energy codes, building designers have been given the difficult task of determining material compatibility and proper tie-in sequencing of dissimilar systems. CCM’s breadth of building envelope materials allows for the internal vetting of material compatibility, taking away the guesswork typically required from designers. CCM’s NVELOP details are easy to read and understand, illustrating the most common material combinations along with step-by-step installation instructions to create the continuous air seal required by energy codes. NVELOP details can be downloaded from the NVELOP website here.

CCM is unique in its ability to provide a wide range of materials from a single source. Similarly, NVELOP is unique in its ability to provide a single-source warranty for the tie-ins between dissimilar CCM systems. However, the uniqueness of CCM and NVELOP can make specifying for public bid projects complicated. To address these difficulties, CCM developed the MasterFormat Specification Sell Sheet with instructions on how to write CCM and NVELOP as the basis of design in public bid project specifications, while keeping them open for competition. To download CCM’s NVELOP MasterFormat Specification Sell Sheet, click here.

NVELOP is unique in its ability to provide warranty coverage for tie-ins between dissimilar CCM materials. Traditionally, applying for and receiving a warranty for tie-ins was either impossible or extremely difficult and involved lots of paperwork and time. NVELOP eliminates these issues with an easy online warranty application process. Once the individual CCM system warranties are purchased and received, visit NVELOP’s warranty application portal here and fill in the appropriate information.


If you have questions about any of these building envelope tools, please contact Chris Kann at [email protected].
January 8, 2020
Air and Vapor Barriers for Roofs

In 2012, the International Energy Conservation Code (IECC) introduced the continuous air barrier requirement for new commercial construction. This meant that air and vapor barriers were now required for walls, and they must be tied to both the roofing assembly and the foundation. For years, many architects and designers only utilized an air and vapor barrier on the roof deck for high-humidity occupancies, such as swimming pools or food processing facilities. But the new requirement meant taking a hard look at the needs of all buildings and what a roof assembly could do for the building envelope. A single-ply membrane, as stated in the IECC and as tested utilizing the ASTM E2178 standard, qualifies as an air barrier and can satisfy the requirement for an air barrier on any given project. So why would you consider adding an additional air and vapor barrier to the roofing assembly? There are a couple of very simple reasons: Reason 1: Air Intrusion. While a properly installed roofing system will not allow air leakage (e.g., conditioned indoor air from exiting the building thermal envelope), it does allow air movement within the roof assembly. As the single-ply roof membrane is on the top of the assembly, indoor conditioned air can infiltrate into the roofing system and travel into the layers of insulation or cover boards. Why is this an issue? See Reason 2… Reason 2: Moisture Migration. Adding a deck-level air and vapor barrier is a great solution to prevent air intrusion and moisture migration. This also allows the wall air and vapor barrier to be tied together at the deck level, which allows the roof to be replaced more easily in the future. The contractor will not be modifying the continuous air barrier when re-roofing, as the roof is no longer that barrier. Carlisle SynTec provides many options for deck level air and vapor barriers: VapAir Seal MD for steel deck construction, direct to deck; VapAir Seal 725TR for Concrete Decks; VapAir Seal Flashing Foam for sealing around penetrations such as pipes; Go to the Air and Vapor Barriers Product Page on the Carlisle SynTec website for more information, specifications, and details. Contact Craig Tyler at [email protected] with further questions.

Read This Post
December 18, 2019
Cold Weather Installation Tips Part 2 - Membranes and Insulation

As discussed in the previous SpecTopic, "Cold Weather Installation Tips Part 1 - Low-VOC Bonding Adhesives and Primers", specifying and handling of building envelope products is challenging during the colder winter months. Single-ply membranes and rigid insulation boards need some extra consideration, as they can be adversely affected by outside temperatures. For starters, all membranes will need time to "relax" after being unrolled from the original packaging; this applies to EPDM, TPO, PVC and KEE HP. It is also suggested that membrane widths be limited to a maximum of 10 feet for adhered roofing systems. Treat flashing products and accessories as you would adhesives and primers, by utilizing heated storage enclosures or "hot boxes". This practice is strongly recommended when ambient temperatures are expected to fall below 40°F for an extended period of time. In all applications, but especially in cold conditions, insulation and underlayments must be stored so that they are kept dry and protected from the elements. Insulations should be stored on a skid, covered with a breathable tarp, and weighted to prevent wind damage. In winter months, ice and frost can form on the membrane. This can be difficult to see and can remain on the roof well into the day, especially on white membranes. This can be especially hazardous when working near the edge of the roof. Additionally, frost on metal edges and copings can create a very slick surface and cause ladders to slide and shift. Never step onto a metal coping when it is frost- or snow-covered. So for your next cold weather specification for single-ply membranes and rigid board insulation, include some installation precautions as mentioned. Contact Craig Tyler at [email protected] with further questions.

Read This Post
December 4, 2019
Cold Weather Installation Tips Part 1 – Low-VOC Bonding Adhesives and Primers

As temperatures fall and winter approaches, specifying and handling building envelope products – especially adhesives and primers – becomes a concern. Low-VOC adhesives and primers contain more water than standard adhesives and primers and can be adversely affected by outside temperatures. When specifying a low-VOC bonding adhesive or primer for a winter installation time frame, make sure to include information in the specification regarding cold weather application. This should include heated storage enclosures, or "hot boxes", for jobsite adhesive storage. This practice is strongly recommended when ambient temperatures are expected to fall below 40°F for an extended period of time. Adhesives and primers should be stored in locations where temperatures are between 60°F and 80°F. While working with adhesives, they should be rotated in hot boxes to ensure the temperature of the product stays above 40°F. Adhesives may appear gelled or lumpy when left for extended periods of time at temperatures below 40°F. If this occurs, return the material to room temperature for a minimum of 24 hours prior to use. In all applications, but especially in colder conditions, make sure you achieve the proper coverage rates for the adhesive or primer being used. Following coverage rates for Low-VOC adhesives and primers allows proper flash-off and reduces the trapped solvents which could lead to membrane blistering. For applications in very cold temperatures, Flexible FAST™ Adhesive may be necessary. Flexible FAST is a two-part polyurethane foam adhesive which is spray-applied and used with a fleece-backed single-ply membrane. The advantage of this system is that it can be sprayed using 15- or 50-gallon drums of Part A and Part B, which can be heated using drum or band heaters. This allows the material to stay warmer during application and lowers the minimum application temperature to 25°F. So for your next cold weather specification of Low-VOC adhesives and primers, include some installation precautions as mentioned. Contact Craig Tyler at [email protected] with further questions.

Read This Post
X
Email to your Colleagues >
Separate multiple emails with a comma or semicolon.
Copy Me


Please log in to share this item by email.
Add to a Collection >
Please log in to share this item to your collections.
Private
Private Collection (change)

Loading...
Invite user by email:
User Invited. Invite another
User Invite Failed, try again.
X
Visibility Options
Public Collection
Anyone with a link can view. No sign-in required.
Private Collection
Only people explictly granted permission can access. Sign-in required.
X

You are now working in your copied collection
Okay